式与方程教案(推荐5篇)

时间:2025-06-09 作者:好拿网

式与方程教案 篇1

【教学目标】

使学生进一步认识用字母表示及其作用,能正确的用含有字母的式子表示数量及数量关系。

【重点难点】

能正确的用含有字母的式子表示数量及数量关系、计算公式等。

【教学准备】

多媒体课件,实物投影。

【谈话导入】

1、看到这些字母,你能立刻想到什么?

同学们能很快的说出这些字母或字母组合表示的意义吗?说明字母在生活有一定的地位和作用。

2、揭示课题:这节课我们就来学习式与方程。(板书课题)

【复习讲授】

复习字母表示数

1、结合谈话导入说说用字母表示数有什么优越性?

教师:用字母能简明的表达数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。

2、请同学们完成下面的练习。

(1)填空。(课件出示)指名板演,其余学生写在练习本上。

①用s表示路程,v表示速度,t表示时间,那么s=()。

②b乘5、6可以写作(),还可以写作();a乘h可以写作(),还可以写作()。

③a、b、c、d表示非0自然数,那么分数乘法的计算方法可以用字母表示()。

(2)订正后提问:在写含有字母的式子时需要注意什么问题?

3、师生共同总结在写含有字母的式子时应注意的问题:

(1)在含有字母的`式子里,数和字母中间的乘号可以记作“?”也可以省略不写。

(2)省略乘号时,应当把数字写在字母的前面。

(3)数与数之间的乘号不能省略。加号、减号、除号都不能省略。

4、巩固练习。

(1)完成教材第81页的第一个“做一做”。

(2)根据题意写出各式表示的意思。

一种滚筒式洗衣机,单价a元,商城第一天卖出m台,第二天卖出9台。

m-9表示()m+9表示()

ma表示()9a表示()

(m+9)a表示()(m-9)>a表示()

答案:

(1)

(2)第一天比第二天多卖出的台数

第一天和第二天一共卖的台数

第一天卖的钱数

第二天卖的钱数

两天一共卖的钱数

第一天比第二天多卖的钱数(或第二天比第一天少卖的钱数)

【课堂作业】

教材第82页练习十六第1、2题。

学生独立完成,教师要求学生自己检验。

【课堂小结】

通过这节课的学习,你有哪些收获?

【课后作业】

完成练习册中本课时的练习。

第8课时式与方程(1)

在写含有字母的式子时应注意的问题:

1、在含有字母的式子里,数和字母中间的乘号可以记作“?”,也可以省略不写。

2、省略乘号时,应当把数字写在字母前面。

3、数与数之间的乘号不能省略。加号、减号、除号都不能省略。

式与方程教案 篇2

教学内容:

教学目标:

1、帮助学生整理式与方程的知识体系,学会用字母表示数,体会用字母表示的简洁性。

2、理解方程的含义,会熟练地解简易方程,初步沟通算式、代数式、具体数量之间的关系。

3、进一步理解基本的数量关系,会根据实际情况选用方程解决问题,提高学生的方程及代数意识。

教学重点:明确字母表示数的意义和作用;会灵活的用方程解答实际问题。

教学难点:找等量关系式,用方程解决实际问题。

教学过程:

一、谈话引入,揭示课题

今天我们来复习“式与方程”。看到这课题,你想到了哪些知识?(用字母表示数,解方程,用方程解决问题)

二、复习用字母表示数

1。用字母表示数。

①1,2,3,4,5,6……可以用哪个数来表示?x

②4,8,12,16,20,24……可以用哪个数来表示?4x

师:4x与x有什么关系呢?4x表示x的4倍

“2x+4”呢?“x÷2—4”呢?

小结:我们要弄懂含有字母式子的含义,含有字母的式子可以表示一个数,而这个数与这个字母有着一定关系。

2。做一做。字母a来表示一个数,你能根据不同关系的表述分别写出另一个数吗?

一个数另一个数

a比a多2的数a+2

比a少2的数a—2

2个a相加是多少?2a

2个a相乘是多少?a2

a的2倍2a

a的一半a÷2

学生独立完成,汇报结果。

2a与a2有什么区别?用字母表示数要注意什么?

三、复习方程与解方程

(1)如果黑板上的三个式子:“4x”“2x+4”“x÷2—4”的结果都是60,那么这些式子就都等于多少呢?

像这样的等式数学上叫做什么?(方程)

什么叫方程?(含有未知数的等式叫方程)

(2)学生独立练习解上述三个方程,完成后校对讲评。

四、复习用方程解决问题

1。根据上述三个方程,编解决问题。

(1)根据4x=60,你想到了什么数学问题?

①小明骑自行车4小时行了60千米,平均每小时行了多少千米?

解:设平均每小时行了x千米。4x=60

②一个正方形的周长是60厘米,它的边长是多少?

解:设它的边长为x厘米。4x=60

师:列方程的依据是什么?

(2)根据2x+4=60,你想到了什么数学问题?

①甲筐有苹果60千克,,乙筐有苹果多少千克?

解:设乙筐有苹果x千克。列出方程是:2x+4=60。

师:你能根据方程,补上相应的条件吗?(甲筐是乙筐的2倍还多4千克)

②如果要列出x÷2—4=60的方程,可以把哪句话改一改?怎么改?

“甲筐是乙筐的2倍还多4千克”改为“甲筐是乙筐的一半还少4千克”

师:刚刚补上的'两个条件,正是在列方程时要用到的关键句,知道什么叫关键句吗?

师:从这句话中可以找到数量关系,列出方程。

2。复习用方程解决问题的一般步骤。

小明和小刚两家相距425米。两人同时从家出发,经过2。5分钟后能在途中相遇。小明每分钟走75米.小刚每分钟走多少米?(用方程解答)

(1)学生独立解答,指明板演,集体校对。

(2)用方程解决问题时要做到哪几步?

一般步骤:①读懂题意;②设未知数;③找出等量关系;④列出方程;⑤解方程:⑥检验得数。

师:在这六步中你们认为哪一步是最重要的?

3。对比质疑突出优化。

(1)陈老师为学校买了8个篮球,12个足球,共用去760元。已知篮球每个32元。足球每个多少元?(用方程解答,方法越多越好)

学生独立解答,集体分析校对。

①8×32+12x=760“篮球的总价+足球的总价=两种球的总价”

②760—12x=8×32;“篮球的总价相等”

③(760—12x)÷8=32;“篮球的单价相等”

④(760—12x)—32=8;“篮球的个数相等”

⑤(760一32×8)÷x=12“足球的个数相等”

师:根据以上五个等量关系列出的方程,你们觉得最容易找到等量关系的是哪一个?

师:根据每个人的理解,能较快地找到等量关系列出方程的都应该是可以的。但如果你所列出的方程计算比较麻烦.就要继续调整,找出其他的等量关系来列方程.像上题通常容易想到的是按“总价相等”来列出方程。

(2)选择合适的方法解决。

①陈老师为学校买8个篮球,每个32元;买了若干个足球。每个42元;买这两种球共付了760元,问足球买了多少个?

②陈老师为学校买了8个篮球。每个32元;12个足球,每个42元。问共要付多少元?

小结:②顺向思考题通常用算术法,

①逆向的,较难的用方程比较简单。

五、课堂小结

今天我们学习了什么内容?你有哪些收获?还有什么疑惑?

式与方程教案 篇3

一、教学目标:

1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。

2、会用等式性质解形如x+5=12的简单方程。

3、培养观察、分析概括的能力。

二、课时安排:

1课时

三、教学重点:

能用等式的.性质解简单的方程。

四、教学难点:

了解等式的性质。

五、教学过程

(一)导入新课

故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?

(板书:大象的体重=石头的重量)

师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。

检查预习。

(二)讲授新课

探究一:学习等式性质

1、师操作:在天平两侧各放一个5克砝码。

提问:你能用一个等式表示天两边关系吗?

提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?

提问:你还能用一个等式表示吗?

教师呈现其他天平直观图,鼓励学生观察并写出等式。

全班交流,

教师总结概括出等式性质。

等式两边都加上同一个数,等式仍然成立。

师操作在刚才的基础上一个一个减砝码。

提问:你能用等式来表示吗?

提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?

提问:你还能用一个等式表示吗?

教师呈现其他天平直观图,鼓励学生观察并写出等式。

全班交流,

教师总结概括出等式性质。

等式两边都减去同一个数,等式仍然成立。

3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。

(三)重点精讲。

探究二:学习解方程

师板书x+2=10问:用天平如何表示?

问:如何用刚才的知识解方程?(两边都减去2)

1、师根据学生回答板书并画出天平图。

2、师在解题示范时要注重“解”和“等于号”的书写要求。

3、交代检验方法。

4、学生试着解方程。

y-7=12 23+x=45

组内交流收获和疑惑。

小组汇报。

教师总结板书:根据等式的性质解方程。

(五)随堂检测

1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。

2、看图列方程,并解方程。

3、解方程。

(1)x – 19 = 2

(2)x - 12.3 = 3.8

4、看图列方程,并解方程。

5、看图列方程,并解方程。

6、看图列方程,并解方程。

板书设计

X+5=7 x-5= 7

解:X+5-5=7-5解:x-5+5=7+5

X=2 x=12

等式的两边同时加上或者减去同一个数,等式仍然成立。

七、作业布置

课本69页5、6题

式与方程教案 篇4

教学内容:六年级下册整理与反思之《式与方程》

教学目标:

1、通过复习使学生进一步理解用字母表示数的意义和方法,能用字母表示常见的数量关系,运算定律,几何图形的周长、面积、体积等公式。

2、明确方程、解方程和方程解的概念,弄清楚方程与等式的区别。

3、正确理解方程的含义,能熟练地解简易方程。

教学重点:

明确字母表示数的意义和作用;理解方程的相关概念;熟练地解建简易方程。

教学难点:

明确等式与方程的区别,能熟练解简易方程。

教学具准备:

多媒体课件等。

教学过程:

一、导学设疑,揭示课题

1、出示:CCTV、SOS、UFO、NBA、CS、ATM、VIP师:看到这些字母你立刻想到了什么?

同学们的课外知识真丰富,那么我们今天要学习的'课内知识相信大家也一定能学会。

2、今天我们就围绕字母所涉及到的式与方程的知识进行整理与反思。(板书课题)

二、自学质疑,沟通联系

1、同学们先想一想,在我们小学六年的数学学习中,用字母都表示过什么呢?

出示问题后,汇报交流大家都想好了吗?谁来说说?

(1)根据回答板书:用字母表示数量关系。

接着让学生举例来说明,师根据学生的回答板书:s=vt还可以表示什么呢?(2)板书:表示计算公式。你能举个例子吗?根据回答板书:s=ahc=4a用字母表示平面图形计算公式

正方形、长方形、平行四边形、三角形、梯形和圆形的相关计算公式。用字母表示立体图形体积计算公式

正方体、长方体、圆柱、圆锥的体积公式。在简写时我们要注意什么呢?(点名回答)

师鼓励:他说得太精彩了,大家不要吝啬自己的掌声哦!

想一想:在一个含有字母的乘法式子里,数字与字母,字母与字母相乘时,怎样正确规范地书写呢?(出示温馨提示)

刚才我们用字母表示了数量关系、计算公式,字母还可以表示什么呢?(还可以用

字母表示运算定律。)

(3)请同学们说出所学过的用字母表示的运算定律。(PPT展示)看来小小的字母在我们的数学课堂上用途还真不少!大家觉得用字母表示数有什么好处?(用字母表示数,比较简洁明了。)

小结:正因为用字母表示数简明易记,所以生活中很多数学现象人们都喜欢用字母来表示。(请看大屏幕)

三、展学释疑,巩固练习

1、用含有字母的式子表示下面的数量。

1)一只青蛙每天吃a只害虫,100天吃掉只害虫。2)小明今年b岁,再过十年是岁。3)一堆货物x吨,运走24吨,还剩吨。

4)水果店有x千克苹果,一共装6箱,平均每箱装千克。5)m表示一个偶数,与他相邻的两个偶数是和。

小结:通过上面的练习,我们感受到用字母表示数应用很广泛,表达很简洁,有很强的概括性。在你们未来的学习中,数字会越来越少,字母会越来越多,同学们可以使用这些简洁的字母使你的学习越来越轻松。

下面我们就来看一下用字母表示的这些式子分别代表什么意义!

2、学校买来9个足球,每个ɑ元,又买来b个篮球,每个58元。9ɑ表示58b表示58-ɑ表示9ɑ+58b表示如果ɑ=45,b=6,则9ɑ+58b=

四、自学质疑,建构体系

1、学习了用字母表示数后,我们还一起认识了方程。

出示问题:什么是方程?方程与等式有什么关系?(介绍两者的练习与区别)请用自己喜欢的表达方式来说说方程与等式的关系。

我们可以用一句话概括:方程一定是等式,但等式不一定是方程。也可以用集合的形式来描述。

2、如果给你一些式子,你能判断它是不是方程吗?(出示练习题)1①4+0.7X=102②X-0.25=③30a+5b④7X-6<36

4X21⑤55X=Y⑥

=30%⑦1÷8=0.125⑧X+X=42

432在判断一个等式是否是方程时,需要特别关注什么?

(在判断一个等式是否是方程时,需要特别关注等式中是否含有未知数,含有未知数的等式,就一定是方程。)

3、你会解这些方程吗?(独立完成)

刚才在解方程时运用了哪些知识?(解方程时应用了等式的性质)

4、等式的性质有哪些?怎么样应用等式的性质解方程?

出示等式的性质:

①等式两边同时加上或减去同一个数,等式仍然成立;

②等式两边同时乘以或除以同一个数(除数不能为零),等式仍然成立。

小结:一般根据等式的基本性质来解方程。还可以根据加减法之间、乘除法之间的互逆关系来解方程。

五、用学生疑,总结延续这节课我们一起回顾、整理了很多式与方程的知识,收获知识不是最快乐的,用我们收获的知识去解决无数的数学问题才是我们学习数学的最大乐趣。你们说对不对?希望同学们能够用我们整理的知识去解决生活中更多的实际问题。

式与方程教案 篇5

教学内容:

苏教版义务教育课程标准实验教科书第92页《式与方程》“练习与实践”的第11-6题。

教材学情分析:

《式与方程》复习教材上分为两个部分,“整理与反思”部分主要复习用字母表示数的方法,以及方程意义和解法。教材先后组织学生讨论三个问题,首先要求学生举出一些用字母表示数的例子,让学生在交流中进一步认识到:当用字母表示数时,含有字母的式子可以表示公式,运算律和数量关系;然后要求学生说说方程与等式的联系和区别,在比较中进一步明确方程的含义;接着要求结合具体的例子回忆并整理等式的有关性质,在整理中进一步理解解方程的依据和方法。

“练习与实践”第1题让学生根据一些常见的数量关系,用含有字母的式子表示相应的数量,体会用字母表示数的应用价值,培养用字母表示数的意识和能力;“练习与实践”第2题是解方程的练习,教材呈现的方程不仅在形式上具有较强的典型性,而且解方程的过程还涉及整数、小数、分数和百分数的计算,通过练习,能使学生加深对等式性质的认识,并自觉整理有关方程的解法;“练习与实践”第3-6题是让学生列方程解决有关整数或小数计算的实际问题。其中,第6题让学生利用鞋的码数和厘米之间的换算关系,根据已知的码数列方程求出相应的厘米数,或根据已知的厘米数列算式求出相应的码数。通过解答这样的问题,不仅能使学生进一步掌握列方程解决问题的基本思考方法,而且能使学生进一步体会到方程是描述数量关系的一种常见和有效的数学模型,列方程解决问题具有独特的方法价值。

教学目标:

⑴使学生进一步体会方程的`意义和思想,会用等式的性质解一些简单的方程,能列方程解答一些需要两、三步计算的实际问题,提高用含有字母的式子表示数量关系的能力,增强符号意识。

⑵使学生进一步掌握列方程解决问题的基本思考方法,而且能使学生进一步体会到方程是描述数量关系的一种常见和有效的数学模型,列方程解决问题具有独特的方法价值。

⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

教学重点

提高用含有字母的式子表示数量关系的能力,增强符号意识。

教学难点

提高用含有字母的式子表示数量关系的能力,增强符号意识。

教学流程:

一、自主学习,完成练习。

⑴揭示课题。

教师谈话:今天我们复习《式与方程》,(板书课题——“式与方程”)。方程好多同学不再陌生,这里的式是什么意思,猜一猜!

预设学生回答:式子;含有字母的式子;……

教师小结:一般指含有字母的式子。

⑵举例回忆。

举例一些用字母表示数的例子。

二、解决问题,梳理知识。

⑴举例分类。

板书学生说出的用字母表示数的例子,引导学生适当分类。

公式:S=vt,……

规律:a+b=b+a,……

数量关系:5a,……

⑵再次理解。

呈现“练习与实践”第1题;自主完成“练习与实践”第1题;交流矫正所填的答案;理解答案所表示的意思;体会用字母表示答案,其实也在表示数量关系。

⑶激活记忆。

呈现“练习与实践”第2题;自主完成“练习与实践”第2题,指明学生板演;评价学生的板演情况,回忆学过会解答的方程类型和解方程的根据。

例: 30X=15 回忆类型X×a=b和X÷a=b。

解:30÷30×X=15÷30 运用了等式的性质,回忆等式的性质2。

X=15÷30 可以省去上面一步。

X=0.5

联想等式的性质1,回忆简单方程的类型,X±a=b。

例: 50X-30=52 把50X看作一个数,说明也是转化思想。

解:50X-30+30=52+30 运用等式的性质1。

50X=52+30 可以省去上面一步。

50X=82

X=82÷50 运用等式的性质2.

X=1.64

回忆验算的方法,并选择题目验算;比较呈现方程的异同,正确选择解方程的方法。

⑷解决问题。

学生自主完成“练习与实践”第3-6题,教师巡视;引导学生用方程思考,体会列方程的思考方法;介绍其它解答方法,体会转化的策略和方法。

“练习与实践”第3题,抓住重点句子的理解,重点句子是“现在能收看的56套节目,比开通有线电视前的5倍少4套”,列出方程,体会隐含在句子中的数量关系式,并沟通和算式之间的联系。

“练习与实践”第4题,一般会选择算式解法。引导学生列出两种不同的方程:(120+95)X=1262和120X+95X=1262,体会不同的数量关系式列出的方程也不同,沟通两种方程间的联系。

“练习与实践”第5题,引导学生体会列方程解决问题的思考方法,列出方程,解方程,验证答案;用转化的方法解决实际问题,体会转化策略的简捷。

“练习与实践”第6题,交流换算的方法,特别是厘米换成码数的方法,可以变换出新的公式a=(b+10)÷2,也可以用方程解答等等。

⑸谈谈本节课的收获。

本文来源:http://www.hn373.com/jiaoan/5052.html