✹ 小学数学放缩法思想总结 ✹
曹光林在贵州农村师范小学数学工作室:余其强
我读了小学数学与数学思想方法这本书,这本书主要讲了四个方面的内容:一是讲了抽象的数学思想,内容包括抽象思想、符号思想、分类思想、集合思想、变中不变思想、有限与无限思想。二是推理的数学思想,主要包括归纳推理、类比推理、演绎推理、转化思想、数集合思想、几何变换思想、极限思想、代换思想;三是与模型有关的数学思想,包括模型思想、方程思想、函数思想、优化思想、统计思想和随机思想;四是其它的数学思想,其中有数学美思想、分析和综合法、反证法、假设法、穷举法、数学思想的综合运用,这本书对我受益很大,得到以**会:
数学思想在“四基”中占有重要地位
数学思想、数学方法、数学思想方法近年来收到数学教育家界广泛关注,数学思想是对数学知识的本质理性认识,数学抽象思想、推理思想、模型思想、这三个基本思想分别对数学学科的建立、发展和应用起到了重要的着用,这三个思想演变、派出、发展出很多其它的较低层的数学思想,如分类思想、归纳思想、方程思想、函数思想等。所以我们在教学时,必须专研教材,学习教学新课标,找出每一节教材的数学思想,这样教师在教学时能找准重点和难点。能够有的放矢。
两种数学方法是解决数学问题的方法和手段
首先,我们应该理解数学思想和方法之间存在差异和联系。数学思想是数学方法的进一步完善和推广。数学思想的抽象概括程度较高,数学方法的可操作性较强。人们实现数学思想往往要依靠一定的数学方法,而人们选择数学方法又要以一定的数学思想为依据。
数学的方法也是有层次的,基本的方法有演绎推理法、合情推理法、变量替换方法、等价变形的方法、分类讨论的方法等等,下一层的方法有分析法、综合法、穷举法、反证法、列表法、图像法等等。数学方法是数学的灵魂。要想学好数学,就必须深入数学的灵魂。作为一名教师,应该根据每一个班级的数学思想和学生的年级选择灵活的教育手段,以达到更好的教育效果。
三是不断提高教师的专业素质和教学水平
2001年的义务教育阶段的数学课程改革已经非常重视数学方法,并在总体目标中明确提出:学生能够获得适应未来社会生活和进一步发展所必须的重要数学知识以及基本的数学思想和必要的应用技能,这一总目标贯穿于小学初中,这充分说明了思想方法的重要性。2011年总目标进一步提出:
“通过义务教育阶段的数学学习,学生能够获得适应社会生活和进一步发展所必需的数学知识,基本技能、基本思想、基本活动经验。”这一表述打破了我国教育的传统局面。数学教育目标的变化反映了数学观和数学教育观的变化。
当今社会是高度科技化、信息化的市场经济社会,数学在科技、经济等领域被广泛应用,因此数学作为广泛应用的技术也日益得到重视,数学作为广泛培养人的思维能力的学科,数学的能力无论是技术力还是思维力,都不仅仅是数学知识和技能作用,因此学生获得良好的数学,教育标志是三维目标的整体实现,是培养学生逐步用数学眼光看待世界分析问题和解决问题。因此,作为义务教育阶段的数学教师将面临更大的挑战。一方面,数学思维方法缺乏专业知识;另一方面是课堂教学中应该具备的数学思想方法的意识、经验、策略等的不足。我们只有钻研数学课程标准、教材、充分了解学生、选择恰当的教学方法,不断提高教师素养和教学水平,才能实现我们的教育目标。
4、 重视学生数学思维方法的获的途径
三维目标中倡导学生获取数学思想的方法有小组合作交流、动手实践、自主**的三种学习方式,我们义务教育阶段的教师要根据学生实际、教材内容,在学生已有的知识经验的基础上,教会学生的学习方法,才能达到应有的教学效果。
总之,社会是向前发展的,教师只有终生不断学习,才能使我们教育思想和方法不落后,适应社会发展的需要,为社会培养出合格的人才。
✹ 小学数学放缩法思想总结 ✹
小学阶段的数学思想方法
抽象、推理和模型是数学的基本思想方法,是最高层面的思想方法,在实践中又派生出很多与具体内容结合的思想方法。
在小学阶段,数学思想方法主要有符号化思想方法、类比思想方法、化归思想方法、分类思想方法、方程思想方法、函数思想方法、集合思想方法、对应思想方法、数形结合思想方法、数学建模思想方法、代换思想方法、优化的思想方法、假设的思想方法、极限思想方法、统计思想方法。
(一)符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想方法。在实际教学中,符号化的数学思想方法经常使用。如数学中各种数量关系(时间、速度和路程 :S=vt ;反比例关系:xy=k );还有量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律(加法交换律: a + b =b + a ;乘法分配律 : a (b+c) = ab + ac )、公式(平行四边形面积:S = ah ;圆柱的体积: V= sh );以及用符号表示图形(如三角形ABC 有符号表示角:∠1、∠2、∠3;两线段平行:AB∥CD ) ;还有其他的符号化思想方法的具体应用。通过这样的教学,使学生感受到使用符号的简洁性,逐步形成符号思想方法。
(二)、类比思想方法
无论是学习新知识,还是利用已有知识解决新问题,如果能够把新知识和新问题与已有的相类似的知识进行类比,进而找到解决问题的方法,这样就实现了知识和方法的正迁移。因此,要引导学生在学习数学的过程中善于利用类比思想方法,提高解决问题的能力。例如在数与代数中,与整数的运算顺序和运算定律相类比,可以导出到小数、分数的运算顺序和运算定律;还有与分数的基本性质相类比,可以导出比也具有类似的性质,并且可以推出它和分数一样能够进行化简和运算。问题解决中数量关系相近的问题的类比(如修一座桥,已知工作总量和工作时间,求工作效率的问题。通过类比的方法,修一条公路、生产一批零件的问题等,用同样方法可以解决);使用此方法最记忆犹新的就是在推导三角形的面积时,就类比了平行四边形面积的推导方法,从而使得面积的推导更加轻松易懂,也让学生体会到类比方法的好处,从而形成类比思想方法。而这两种图形面积的推导方法就是接下来我们要说的转化的数学思想方法。
(三)、化归思想方法
化归思想方法就是转化的思想方法。转化思想方法是由一种形式变换成另一种形式的思想方法。在实际教学中,如几何的等面积变换(例如:五年级上册学习有关平行四边形面积的推导过程时,我们把未知的知识转化为已知的知识来进行探讨,就是把平行四边形的面积转化为长方形的面积,在这个转化的过程中,面积不变,只是形状发生了变化,继而通过长方形面积推导出平行四边形的面积);还有在解方程中(例如:解方程的过程,利用一些等式的性质、积与因数的关系等,实际就是不断把方程转化为未知数前边的系数是1的过程(x=a) );公式的变形中也常用到转化的思想方法(例如:小数乘法和小数除法就是转化为我们熟悉的整数乘法和整数除法来进行解答)。
(四)、分类思想方法
分类思想方法不是数学独有的方法,就是以一定标准对某一对象进行分类。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。在教学中,此思想方法经常用。如自然数的分类,若按能否被2整除分为奇数和偶数;若按约数的个数分为质数和合数。又例如我在教学《锐角和钝角》时,就采用了此方法,让学生给一堆凌乱的角进行分类,通过分类让学生总结锐角和钝角的特征;还比如,在教学《认识图形》时,通过让学生对实际物品进行分类,从而抽象出各种图形。
(五)、方程思想方法
方程思想方法的核心是将问题中未知量用数字以外的数学符号(常用x、y等字母)表示,根据数量关系之间的相等关系构建方程模型。方程思想方法体现了已知与未知数的对立统一。小学数学在学习方程之前的问题,都通过算术方法解决,在引入方程之后,小学数学中比较复杂的有关数量关系的问题,都可以通过方程解决,方程思想方法是小学思想方法的重要思想方法。例如用一元一次方程解决整数、小数、分数,百分数和比例等各种问题,还有用方程解决鸡兔同笼问题等。
(六)、函数思想方法
设集合ab是两个非空数集,如果按照某种确定的对立关系f,如果对于集合a中的任意一个数x,在集合b中都有唯一确定的数y和它的对应,那么就称y是x的函数,记作y=f(x)。其中x叫做自变量,x的取值范围a叫做函数的定义域;y叫做函数或因变量,与x相对应的y的值叫做函数值,y的取值范围b叫做值域。这是函数定义的。函数思想方法体现了运动变化的、普遍性的观点。虽然在小学数学里没有学习函数的概念,但是有函数思想方法的渗透。与函数最为接近的就是有积的变化规律(一个因数不变,积随着另一个因数的变化而变化, 表示为 渗透正比例函数关系)、商的变化规律(除数不变,商随着被除数的变化而变化,可表示为Y=XK,渗透正比例函数思想方法; 被除数不变, 商随着除数的变化而变化, 可表示为K=YX, 渗透反比例函数思想方法)、还有六年级有关的正比例关系和反比例关系这块内容就是函数思想方法最好的体现。
(七)、集合思想方法
把指定的具有某种性质的事物看作一个整体,就是一个集合(简称集),其中每个事物叫做该集合的元素(简称元)。集合思想方法就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。例如在讲约数和倍数是渗透集合的思想方法,而且讲述公约数和公倍数时采用了交集的思想方法。还有关于四边形、梯形、长方形、正方形、平行四边形的分类也应用了集合的思想方法。
(八)、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此产生函数思想方法。如直线上的点与表示具体的数量是一一对应的;还有在一年级上《比多少》的教学中就已经使用了一一对应的数学思想方法,将物品一一对应起来,进而更容易比出多少。通过此方法的应用,学生逐步感受到,将比较的东西一一对应起来会便于比较,解决问题比较方便。
(九)、数形结合思想方法
数和形是数学研究的两个主要对象,数不离形,形不离数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。如教学《植树问题》时,就采用了数形结合的数学思想方法,通过“图”与“式”的结合继而找出他们之间的数量关系;除此之外,在解应用题中常常借助线段图的直观帮助分析数量关系(如六年级上册探究“一个数除以分数”的算理时,可以借助线段图的方法找出他们之间的联系,也是数形结合思想方法的应用)。
(十)、数学建模思想方法
数学中的各种概念、公式和理论都是由现实世界的原型抽象出来的,从这个意义上讲,所有的数学知识都是刻画现实世界的模型。数学建模就是建立数学模型来解决问题的思想方法。例如:小学数学五年级的出租车计费的问题。出租车起步价是8元,2千米以后按照每千米元计算。小明去的地方离这里有6千米,需要多少出租车费?对待这个问题,学生难免会出现两种情况:一是直接用乘6,忽略起步价;二是知道起步价之内公里数先减掉,最后忘记加上起步价。在教育教学中,教师最好用清晰的线段图示进行分析,让学生慢慢建立一个有关这类问题的一个模型,用起步价加上计价路程的费用,就是等于一共要付的出租车费用。当学生建立好这样的一个模型,对待类似有关问题,可以借助这类模型用同样的方法发散思维。如五年级上册小数乘法的一个课后题就是关于上网收费的问题就可以按照这个数学模型来解决。再说另外一个数学建模的例子,就是在六年级上册学习分数除法的有关知识时,通过学习分数除以整数的知识类比迁移到一个数除以分数的算理,然后再结合整数除法,进行一个有关除法运算的一个知识建构,建立一个针对这几个类型都能使用的数学模型就是: A ÷ B = A × 1/B (B ≠ 0 ),也就是建立有关这类除法运算的万能公式模型。
(十一)、代换思想方法
代换思想方法是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。例如小明买了一套衣服,上衣和裤子总共504元,上衣价格是裤子价格的3倍,上衣和裤子的单价各是多少元?在解决问题中,用代换的思想方法,把上衣的价格用裤子的价格进行代换,这样把求两个未知量的问题转化成求一个未知量的问题,这样就简单化了,问题迎刃而解了。
(十二)、优化思想方法
“优化思想方法”是数学思想方法的重要组成部分,也是构成一个人数学综合素养的要素之一。优化思想方法就是在有限种或无限种可行方案(决策)中挑选最优的方案(决策)的思想方法,是一个很重要的数学思想方法。“优化思想方法”在小学数学教材中处处可见渗透痕迹,如计算教学中的“算法优化”。例:教学中出现如下计算题:27+31=?,让学生用自己喜欢的算法进行计算,学生学到的方法有:
(1)笔算法:7+1=8,20+30=50,8+50=58;
(2)凑整法:27+3+28=(27+3)+28=30+28=58;
(3)分解法:27+1+30=(27+1)+30=28+30=58;
(4)口算法一:20+30=50,7+1=8,50+8=58;
(5) 口算法二:27+30=57,57+1=58或31+20=51,51+7=58。
这些算法,只要引导学生通过比较,很容易得到最优化的方法或基本的算法,但许多教师在教学两位数加减两位数(口算)时,由于片面理解新课程理念倡导的“鼓励算法多样化”理念,认为只要学生喜欢的算法就应提倡,因而就忽视了算法最优化的过程。本题教学中,最优化的算法应该是口算法二,有些学生已经想到,但教师没有引导学生通过比较,得出这是最基本、最优化的算法。实际上,在这五种算法中,口算法二的算法,他的解题过程思考的步骤最少,只有两步,口算教学的基本原则是尽量减少口算过程暗记次数,学生通过比较是很容易得出这一最优化的算法的,同时,这一最优化的算法对于接着学习“两位数加两位数进位加法(口算)”有着重要的铺垫作用。因而数学计算教学鼓励学生算法多样化,必须以算法优化为基础,必须通过引导学生比较算法,从而优化算法,使学生形成基本算法,为今后学习和提高计算技能打下良好的基础。
还有解决问题教学中的“策略优化”。例如:解决“鸡兔同笼”的策略有很多,学生通过多种方法的探索,积累了解决问题的经验,掌握了解决问题的不同方法。但各种方法之间也要突出重点,不能每种方法都泛泛而谈。在众多方法中,列表法、画图法都具有各自的局限性,基于这部分内容安排在五年级,因此在教学中应突出体现一般方法——假设法和代数法的教学。由于代数法是四年级已接触学习过的方法,因此教学中教师以假设法为重中之重来体现,用列表法和图示法帮助学生理解假设法的算理。这样无形之中,体现了解决问题策略多样化、多样化中有优化的特点。
(十三)、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想方法最典型的应用就是《鸡兔同笼》问题了。学生学习完鸡兔同笼,无不对假设的数学思想方法使用的相当熟练。
例如有3个头,8只脚。
假设全是鸡
就有3_2=6只脚
但是还剩2支脚
兔比鸡多2只脚 就是有1个两只脚
所以有1只兔子2只鸡。
假设全是兔
就有34=12支脚
剩下4只
鸡比兔多2只脚 就是有2个两支脚
所以有2只鸡 一只兔子
(十四)、极限思想方法
极限是用以描述变量在一定的变化过程中的终极状态的概念。极限的思想方法为建立微积分学提供了严格的理论基础,极限的思想方法为数学的发展提供了有力的思想方法武器。极限思想方法是一种非常重要的思想方法,是形象思维向抽象思维转化的纽带。在小学阶段渗透极限思想方法,不仅可以提高学生的抽象思维能力,而且有利于掌握数学的思想方法和方法。在小学教学中的在公式推倒过程中渗透极限思想方法。例如在教学“圆面积公式的推导”一课时,教师是这样设计的。
师:我们过了一些图形的面积计算公式,今天我们来研究圆的面积公式。你们有什么办法吗?
生:可以把圆转化为我们学过的图形。
师:怎么转化?
生:分一分。
演示把圆平均分成了2分,把两个半圆地拚起来,结果还是一个圆。
生:多分几份试一试。
演示把一个圆分割为完全相同的小扇形,并试图拚成正方形。从平均分成4个、8个、到16个……
师:你们有什么发现?
生:分的份数越多,拼成的图形就越接近长方形。
课件继续演示把圆平均分成32个、64个……完全相同的小扇形。教师适时说“如果一直这样分下去,拼出的结果会怎样?
生:拼成的图形就真的变成了长方形,因为边越来越直了。
这个过程中从“分的份数越来越多”到“这样一直分下去”的过程就是“无限”的过程,“图形就真的变成了长方形”就是收敛的结果。学生经历了从无限到极限的过程,感悟了极限思想方法的具大价值。学生有了这个基础,到将来学习圆柱体积公式的推导时就会很自然地联想到这种办法,从而再一次加以利用解决问题,在不断的应用中学生的极限思想方法会潜移默化地形成。
以上计算公式的推导过程,采用了“变曲为直”、“化圆为方”极限分割思路。在通过有限想象无限,根据图形分割拼合的变化趋势,想象它们的最终结果。既使学生掌握了计算公式,又萌发了无限逼近的极限思想方法。
(十五)、统计思想方法
小学数学中的统计图表是一些基本的统计方法,例如:求平均数应用题是体现出数据处理的思想方法。(统计一个班的学生的身高、体重、年龄等这些参数,算出这些参数的平均数就是用统计的思想方法处理的。)
✹ 小学数学放缩法思想总结 ✹
教学目标:
1.通过观察、操作,体会比例尺产生的必要性和按相同的比扩大或缩小的实际意义。
2.通过图形的放缩,结合具体情境,感受图形的相似。
教学重点:
图形的缩小与放大。
教学难点:
图形放缩的原理。
教学过程:
一、 揭示课题
1.谈话引入:小红一家外出旅游,照了许多照片,小红把几张照片放大后,挂在家里,把几张照片缩小后,放在夹子里。你知道相片放大缩小的原理吗:
2.板书课题:图形的放缩。
二、 探索新知
1.教学例题
(1)出示例题。
①认真观察图形。
②说一说:谁画得像?
③你是怎么想的?说出你的思维过程。
④教师引导学生得出正确的看法:笑笑和淘气画得最象。
(2)讨论:
师:你知道他们是怎样画的?
①学生独立思考,探究他们的画法。
②教师巡视课堂,帮助有困难的学生,引导他们观察图形的长与宽的长度变化情况
③同学之间交流、讨论。
④反馈讨论结果。
(3)小结。
①由学生说说有什么体会。
②教师小结:只有长与宽都按相同的比来画,画得才象。
3. 完成课本画一画。
三、 探索活动
活动(1)
1. 说一说点A(2,0)中,2和0分别表示什么?
(1) 学生尝试说说自己的理解。
(2) 教师明确说明,2表示列,0表示行。
2. 分别说说B(4,0),C(6,2),D(6,6)各数对中的数字所表示的意义。
3. 把表示点E、F、G、H、I、J的数对填入相应的空格。
活动(2)
(1) X表示什么?Y表示什么?
(2) 2X表示什么?2Y表示什么?
活动(3)
1.学生独立描点。
2.展示学生的作品。
3. 观察比较,说说哪只猫长得象乐乐。
4.你知道为什么?
四、 课堂小结
说一说把图形放大或缩小的关键是什么。
✹ 小学数学放缩法思想总结 ✹
数学归纳法
(—)第一数学归纳法:
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立
(时命题成立,证明当n=k+1时命题也成立。
(二)第二数学归纳法:
第二数学归纳法原理是设有一个与自然数n有关的命题,如果:
(1)当n=1回时,命题成立;
(2)假设当n≤k时命题成立,则当n=k+1时,命题也成立。
那么,命题对于一切自然数n来说都成立。
(三)螺旋归纳法:
螺旋归纳法是归纳法的.一种变式,其结构如下:
Pi和Qi是两组命题,如果:
P1成立
Pi成立=>Qi成立
那么Pi,Qi对所有自然数i成立
✹ 小学数学放缩法思想总结 ✹
一、数形结合的思想方法
数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。
例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。
二、集合的思想方法
把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。
如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。
三、对应的思想方法
对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。
四、函数的思想方法
恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。
函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。
五、极限的思想方法
极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。
现行小学教材中有许多处注意了极限思想的渗透。
在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的`,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。
六、化归的思想方法
化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。
如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。
七、归纳的思想方法
在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。
如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。
八、符号化的思想方法
数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。
人教版教材从一年级就开始用“□”或“()”代替变量 x ,让学生在其中填数。例如: =。符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。
九、统计的思想方法
在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法
小学数学除渗透运用了上述各数学思想方法外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。
✹ 小学数学放缩法思想总结 ✹
一、什么是小学数学思想方法
所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。
所谓的数学方法,就是解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。
数学思想是宏观的,它更具有普遍的指导意义。而数学方法是微观的,它是解决数学问题的直接具体的手段。一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略。但由于小学数学内容比较简单,知识最为基础,所以隐藏的思想和方法很难截然分开,更多的反映在联系方面,其本质往往是一致的。如常用的分类思想和分类方法,集合思想和交集方法,在本质上都是相通的,所以小学数学通常把数学思想和方法看成一个整体概念,即小学数学思想方法。
二、小学数学思想方法有哪些?
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
5、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、集合思想方法
集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
统计思想方法:
小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
极限思想方法:
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的'基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
代换思想方法:
他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
可逆思想方法:
它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
化归思维方法:
把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”.而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
变中抓不变的思想方法:
在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
数学模型思想方法:
所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
整体思想方法:
对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。
✹ 小学数学放缩法思想总结 ✹
由于小学生的抽象概括能力差,在做题是往往不是对题目进行实质性综合分析,而是单一的联系代替运算分析,孤立地以题目中一些表面的个别的外部因素为依据进行解答;遵循机械的联系,按固定的习惯思路,套用以前熟悉的方法以及所形成的运算定势,思维不能随题目性质的变化而灵活地转移;思维只能随着生活中接触到的事物的发展顺序,由原初条件推向结果,而不能由结果返回到原初条件;思维缺乏逻辑性,不能对题目进行连贯的分析综合活动,注意力容易被情节所转移;思维容易受外界的暗示,不能正确审视自己的运算结果以及根据题目的本质联系来检验自己的思维过程。
因此,对小学生进行数学应用题教学,首先是老师要通过分析题意,让学生掌握题目的结构,在让学生根据生活实际来理解题目的具体的数量关系,从中选择正确的运算方法,然后才是计算结果,这样不但可以调动学生的学习积极性,还能培养学生的学生的抽象思维,为以后学习打下坚实的基础。具体来讲要做到“三帮”:
-
✹好拿网必读收藏:
- 小学数学总结 | 小学数学教师述职总结 | 小学数学教研组工作总结 | 班委学期思想总结 | 小学数学放缩法思想总结 | 小学数学放缩法思想总结
一、帮助学生养成良好的审题习惯
应用的难易不仅取决于数据的多少,往往是由应用题的情节部分和数量关系交织在一起的复杂程度所定。同时题目中的叙述是书面语言,对小学生的理解会有一定的困难,所以解题的首要环节和前提就是理解题意,即审题。审题就要读题,读题必须认真、仔细,通过边读边想掌握题中讲的是什么事情,经过怎样,这就是我们常说的应用题的条件。结果怎样,则是所讲的问题。要想弄清楚题中给定的条件是什么,要求问题是什么?不仅要边读边想,在必要情况下还要借助简单的实物图或线段图来辅助理解,这样能把题目里难以理解的内容或抽象的概念简单化,具体化,把抽象的东西摆在眼前,便于让学生容易理解和掌握其题意。如小学三年级课本中有这样一道题:鸡有24只,鸭的只数是鸡的2倍,欢鸡和鸭一共有多少只?题中哪些数据与问题有直接联系,哪些没有直接联系,如果在边读边想基础上再加简单的线段图帮助分析,学生就更容易知道条件是什么,要求的问题是什么了,否则对于抽象概念能力较差的部分学生就难以理解了。实践证明,学生不会解答某一应用题,往往就是对该题的'题意不理解或理解不透彻。一旦了解题意,其数量关系也将明了。因此,从这个角度上讲,理解题意就等于解答应用题中完成一半的任务。
二、帮助学生掌握正确的解题步骤
学虽然概括解题步骤是在学习了复合应用题时才进行的,但在开始应用题教学时就要注意引导学生按正确的解题步骤解答应用题,逐步养成良好的习惯,特别是检查验算和写好答案的习惯。
一道题做得对不对,学生要能自我评价,对的强化,不对的反馈纠正,这实际上是一个推理论证的过程。完成列式计算只解决了“怎样解答”的问题,而推理论证是解决“为什么这样解答”的问题。然而很多小学生不善于从已知量向未知量转化,有时又受生活经验的制约无法检验明显的错误,因此,一要教给学生验算的方法,如:联系实际法、问题条件转化法等;还可以先由师生共同完成,然后过渡到在教师指导下学生进行,最后发展成学生独立完成。
在教学中还经常遇到学生不重视写答案,只写“是多少”就算完了的现象。答案实际上是很重要的,是一件事情的结束。我们做事强调有好的开端,也得有好的结束,那才是一件完整的事,我们做题就同做工作一样,应该有完美的结束。因此,不仅要使学生重视写答案,还要使学生学会写答案。
三、帮助学生联系生活实际
《数学课程标准》十分强调数学与现实生活的联系,在教学要求中增加了“使学生感受数学与现实生活的联系”,这不仅要求应用题的选材要密切联系学生的生活实际,而且还要求数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到数学就在身边,感受到数学的趣味和作用。教学中,要让应用题的情节具有现实性,尽量贴近学生的生活实际,除应用题本身的内容要联系实际外,还要扩大联系实际的范围,如在百分数应用题中增加利息的计算,以及一些保险、纳税等内容,从而提高学生解决简单的实际问题的能力。
数学是一种文化。从某种意义上说,数学教育就是生活的教育。在小学学习期间,数学应用题是培养学生的素质和创新意识的最好途径之一。为此,数学教学应成为能够在生活中实际应用的教学。虽然中国的国情使我们不能在短时间内改变“一举定终身”的考试制度,但我们更应从提高全民的素质入手。我们的目标是“让孩子们喜欢数学”、“让不同的孩子学习不同的数学”、“在我们的生产和生活中有数学”、“大至天文、地理、环保问题、生态平衡问题,小至利率计算、古尸年代测定……均可在数学中找到其应用的踪影。”
总之,从数学应用题教学的发展来看,小学应用题教学是整个应用题教学的基础,学生在这个阶段学习中对应用题的结构、基本数量关系和解题思维方法掌握得如何,都将直接影响以后应用题的学习,因此必须从基础抓起,做好小学数学应用题的教学。
✹ 小学数学放缩法思想总结 ✹
教师要了解学生的想法,有针对性地进行提导,并组织学生进行合作与交流,得出有关结论。因此,教师在教学中要注意培养学生学习数学的愿望,培养良好的学习习惯,创设生动有趣的学习情境,结合学生实际进行教学,鼓励算法多样化,重视学生的实践活动,关注学生的学习过程,创造性地使用教材,以此实现学生学习方式上的转变,提高学生终身学习的能力。
✹ 小学数学放缩法思想总结 ✹
数学方法是数学思想的具体化形式,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。实质上两者的本质是相同的,差别只是站在不同的角度看问题,通常混称为思想方法。数学思想方法的自觉运用会使我们运算简洁、推理机敏,是提高数学能力的必由之路。常见的数学思想方法有:数形结合方法、对应思想方法、转化思想方法、猜想验证思想方法等。下面就以自己的教学实践为例谈谈在实际教学中渗透这些数学思想方法的一些粗浅做法。
一、数形结合的思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
在小学一年级刚开始学习数的认识时,都是以实物进行引入,再从中学习数字的实际含义。例如学习“6的认识”时,先出示主题图,问学生图中有些什么?学生从中数出6朵小花,6只小鸟,6个气球。从而感知5的某些具体意义。再从实物中慢慢抽象成某一特定物体,利用学生的学具小棒摆出由6根小棒组成的任何图形,从而让学生在动手的过程中,不仅表现出自己的独特创意,而且更深一层地理解6的实际意义;第三层次是利用黑板进行画6个圆,6个正方形,6个三角形等特定图形来代表6,从而慢慢抽象至数字6。这样从实物至图形,在抽象到数字,整个过程应该符合一年级小学生的特点,也是数形结合思想的一种渗透。
二、对应思想方法
利用数量间的对应关系来思考数学问题,就是对应思想。寻找数量之间的对应关系,也是解答应用题的一种重要的思维方式。
在低、中年级整数应用题训练时,教师就应该让学生明白数量之间存在着一一对应的关系。
例如:水果店上午卖出苹果6筐,下午又卖出同样的苹果8筐,比上午多卖100元,每筐苹果多少元? 这里存在着钱数和筐数的对应关系,学生如果能看出下午比上午多卖的100元对应的筐数是(8-6)筐,此题就迎刃而解了,即100÷(8-6)=50(元)。
此外,在教学归一问题、相遇问题时,都要让学生找到题中数量之间的'对应关系。解决问题对于小学生是个抽象的问题,特别对于低、中年级学生更难理解。但找到了对应关系,也就找到了解题的关键。
三、转化思想方法
转化就是在研究和解决有关数学问题时,采用某种手段将一个问题转化成为另外一个问题来解决。一般是将复杂的问题转化为简单的问题,将难解问题转化为容易求解的问题,将未解决的问题转化为已解决的问题。
例如:上“整十、整百相加减”一课时,先让学生观察,然后问一问,能不能把整十、整百相加减化为我们以前所学过的几加几,几减几,这样学生不仅很快能掌握新学得知识,还可以自己解决整百相加减。这正是再渗透转化思想的方法。
四、猜想验证思想方法
猜想验证是一种重要的数学思想方法,正如荷兰数学教育家弗赖登塔尔所说:“真正的数学家常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中,教师要重视猜想验证思想方法的渗透,以增强学生主动探索和获取数学知识的能力,促进学生创新能力的发展。
例如:教“乘法分配律”一课时,我设计了以下几个环节:
(×6×25+8×25
学生独自计算结果。
2、讨论两个算式的异同点。
3、根据自己的发现举出类似的例子,并加以计算。
4、验证后,总结归律。
这样,通过算、讨论、说、算、说,学生初步感知了乘法分配律。至此,猜想乘法分配律已是水到渠成。
现代数学思想方法的内涵极为丰富,诸如还有集合思想、极限思想、优化思想、统计思想、等等,小学数学教学中都有所涉及。我们广大小学数学教师要做教学有心人,有意渗透,有意点拨,重视数学史的渗透,重视课堂教学小结,要以适应小学生年龄特点的大众化、生活化方式呈现教学内容,让学生通过现实活动,主动参与、自主探究,学会用数学思维方法提出问题、分析问题、解决问题,从而让学生的数学思维能力得到切实、有效地发展,进而提高全民族的数学文化素养。在小学数学中,数学思想方法给出了解决问题的方向,给出了解决问题的策略。这就需要教师挖掘、提炼隐含于教材的思想方法,纳入到教学目标。有目的、有计划、有步骤地精心设计教学过程,有效地渗透数学思想方法。
✹ 小学数学放缩法思想总结 ✹
新教材在编写上努力确立学生在数学学习中的主体地位;致力于改变学生的学习方式,倡导自主探索、合作交流与实践创新的数学学习方式;强调体现教材的人文精神。在此思想指导下,新教材不是以例题、习题形式,而是以数学活动的形式安排的。提供了大量的观察、操作、实验等实践活动,如:“实践活动”、“数学小调查”、“做一做”等栏目。加强了学生生活、社会生活的联系,在题材上引入了“奥运”、“环保”等内容,着眼于学生的情感体验,教材还设计了“数学故事”……
✹ 小学数学放缩法思想总结 ✹
一学期即将过去,可以说紧张忙碌而收获多多。本学期,我认真执行学校教育教学工作计划,转变思想,从各方面严格要求自己,积极向老教师请教,结合本校的实际条件和学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有步骤地开展。为使今后的工作取得更大的进步,现对本学期教学工作作出总结,希望能发扬优点,克服不足,总结检验教训,继往开来,以促进教训工作更上一层楼。
一、为人师表,从师德做起。
本学期我继续以学校的两条“高压线”和师德规范为准绳严格要求自己。认真贯彻学校的各项规章制度,本学期我通过电话、短信、家长会等形式与家长沟通,进行友好交往,对家长提出必要的要求,并介绍一些教育孩子的方法、经验,不仅沟通信息还增进了情感的交流。和家长的关系相处融洽。孩子进步了,家长也来向我致谢。我对孩子的一片爱心不仅赢得了孩子对我的爱,也赢得了家长的信任、鼓励和支持。
对于学生,在工作中用爱的方式去教育、启发学生,尊重学生,把学生当作与自己地位平等的人来看待,当学生犯错误时,或学习不用心时,耐心教导对学生动之以情,晓之以理,激发他们的自尊心,上进的勇气。这样调动了学生进取的积极性。使其形成良好的学风。因此我所带的两个班的孩子学习数学的积极性都很高。我还配合班主任组织各种集体活动,积极参加学校组织的各项活动,丰富了学生的课内外生活,使学生的个性得到充分、自由、全面、自主、健康的发展。
另外,当同事们有困难时尽自己的全力帮助他们因此和同事相处和睦。
二、教学为主,认真钻研。
本学期我担任一年级三班和二年级三班的数学教学工作,为了提高我自身的专业素质,我在教学方面认真钻研努力学习,主要从以下几方面做起。
1、认真备课,不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。
2、向武老师学习增强上课技能,提高教学质量,使讲解清晰化,条理化,准确化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上注意调动学生的积极性,加强师生交流,充分体现学生的主作用,尽量让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口、动手、动脑尽量多;同时在每一堂课上都尽量考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。现在学生普遍反映喜欢上数学课。有家长和我联系是说感觉到孩子学习数学的积极性明显提高,解决问题的思路明显清晰。
3、虚心请教其他老师。在教学上,有疑必问。本学期在学校的关心下,在学校“青蓝工程,师徒结对”的活动中,我与武巧变老师结成了师徒对子。在武老师的指导下在本学期的教学工作有了一些进步。在各个章节的学习上都积极征求武老师的意见,学习她的方法,同时,多听课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。
4、认真批改作业:布置作业做到精读精练。有针对性,有层次性。力求每一次练习都起到的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
5、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自我意识力度一部分。在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。本学期我们两个班的后进生的成绩在期末考试中都有很大的进步,大部分孩子都上了90分,我们二年级的武佳伟同学在这次考试中还得了99。5分。
6、本学期我还参加了学校组织的课题研究活动,我的课题是“关于低年级解决问题教学的思考”围绕这个课题我在教学工作中认真研究,积极实践把我的想法及时应用到我的课堂教学中,并且还积极参加了学校组织的课题研究汇报课的展示。经过一个学期的实践总结了一些方法,并且我所带的两个班的学生解决问题的能力都有所提高,在这次期末考试中两个班的学生在解决问题上的失分情况明显减少。尤其是一年级只有六个学生在这方面失分,还是由于粗心列对算式算错得数失分。
三、教学成绩总结。
本学期,期末考试一年级三班平均分XXXX分,优秀率达百分之XXXX以上。二年级三班平均分也有XXXXX分,优秀率达百分之XXXX以上,两班的两个班都取得了全年级第一的好成绩。
四、认真反思,困惑之处。
在本学期的教学工作中我还有许多不足之处使我产生了以下困惑。
1、在教学中有的知识点较难,在学生学习时就研究这些知识的形成过程就需要用一节课时间,使得最后没有练习时间这种情况该怎么处理?
2、在一个班里学生的思维反映速度不一,反映快的同学(大约有10人)总是能很快的学会新知,而反映慢的总得用很长时间反复教才能学会。这种情况该如何设计教学?
3、对于练习题,学生做完以后,是全班集体纠正效果好呢?还是学生自己改后个别好?
以上是我教学工作中遇到的困惑,也是我的不足之处,更是我下一学期努力的目标。我在教学工作还有其他的不足,希望领导批评指正,也希望能帮我解决这些问题。
一份耕耘,一份收获。教学工作苦乐相伴。我将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把工作搞得更好。
篇二:
转眼间,本学期的教学工作已画上圆满的句号。本学期中,我承担一年级两个班的数学教学工作。回首走过的岁月,内心有些许的欣慰,也有几分感慨。现将XX年工作总结如下:
一、思想工作
俗话说:“活到老,学到老”。特别是刚走上工作岗位的我,对于教师的基本工作还很陌生,如:怎样讲课、怎样控制课堂纪律、怎样合理安排自己各项工作、如何与家长相处等。为了早日胜任我的工作,我积极听备课组长和教研组长的课;及时向师傅请教;同时阅读许多书籍,如《中小学数学》、《小学数学教师》等书刊,从中汲取营养,弥补我教学经验的不足。
二、教育教学工作
这学期,本人担任一年级数学教学工作。在教学中,我能自觉做到认真钻研新课标、吃透教材,积极开拓教学思路,不断学习,把一些先进的教学理论、科学的教学方法及先进现代教学手段灵活运用于课堂教学中,努力培养学生的合作交流、自主探究、勇于创新的等能力。而且在教学中及时反思,发现自己教学中存在的问题,并积极寻求解决对策。
在教学中我能够针对一年级学生的特点来设计课堂教学,教学中我注重引导学生体验数学与生活的密切联系,从而激发学生的学习兴趣,让学生爱学数学、会用数学。在课堂教学中,我能够积极地采取多种策略维持良好的课堂秩序,以保证课堂效果更有效。
在重视课堂教学的同时我也特别重视对学生的个别辅导。学生每天做的作业我都及时的批改并讲解,并利用学生的课余时间找学生改错进行复批。
三、考勤方面
本学期,我每天坚持按时上下班。学校给我安排的各项工作我都能及时到岗,认真负责地完成自己所承担的任务。而且整个学期只请了半天假。
四、工作中存在的不足
作为一名新教师,我怀着满腔热情积极开展工作,但是由于经验不足,我的工作中还存在很多问题。
(一)没有合理分配工作时间
这学期我刚参加工作,由于没有工作经验,繁杂的工作让我有点应付不来。每周要上16节课,课间或者午休就要找学生改作业,(由于我们学校是寄宿制学校,所以学生作业完成的质量不高,致使我的复批任务就很重。学生的空余时间我都得争取找一两个学生改作业。)下班之后还要批作业,还要准备第二天的课,每天都得忙到11点多钟。在众多的工作中,批改作业的时间占用太多,致使备课不够充分,同时也休息不好。
(二)课堂中存在的问题
1、有时课前准备不够充分。
2、讲课时的语言不够简练(有时感觉个别学生没有听明白我就在啰唆的讲一遍,其实老师的语言越罗嗦学生听课的效果反而不好)。
3、组织课堂教学的方法不得当。虽然我也会运用多种组织教学的方法,如小组评比,运用肢体语言、面部表情控制课堂,但是当课堂出现突发时间时我就没有办法了。
4、课堂上不能很好地控制自己的情绪,当课堂很乱的时候我会气急败坏的摔东西。我想应该有比摔东西更有效的办法来解决这种僵局。
5、课堂对学生回答问题语言和姿势的训练不到位,这也体现了我课堂教学的预设不足,随意性太大。二班同学这方面训练的就比较到位,那是因为在课堂上有榜样,某个学生回答问题姿势标准,声音洪亮我就大肆表扬,结果同学们回答问题时都注意姿势和声音。在一班上课时只有课堂上出现这中榜样我才会鼓励他们,而当没有榜样出现时我就没有要求,其实不管有没有榜样的出现我都应该有意识的为全班同学树立一个榜样,并且严格要求他们。
6、课堂上表扬的话语太少,对学生回答问题后的反馈不到位,没有等待意识。
(三)作业批改中存在的问题。工作了半年,我总是感觉自己的课下个别辅导时的人员和内容的安排不够合理。每个月学校都要检查一次作业,每次检查的时候我都没有复批完,我总是在责备学生,从来都没有好好想想是不是自己的工作方法有问题。同样是教两个班的数学,她们三个都是班主任,我应该比她们更有时间才对。想想还是自己的工作方式不对。一是改作业不及时,积累多了改起来就更难改了;二是改作业的时间和人员分配的不合理,其实每个班大约有20人的作业出错较少,可以利用课间改正,其余错的比较多的可以利用中午的大块时间改正,并且争取当天的错题当天改完。
我深知,作为一名教师,不仅需要努力地工作,更要掌握合理的工作方法,做好教育教学工作计划。我们在教会学生“活到老,学到老”的同时自也应该不断地学习,不断的更新教育理念,不断的提高自己,这样才能给予下一代更好的教育!我相信一个善于思考的我,下学期的工作一定会更有成效。
✹ 小学数学放缩法思想总结 ✹
一、数形结合的思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的`直观帮助分析数量关系。
在小学一年级刚开始学习数的认识时,都是以实物进行引入,再从中学习数字的实际含义。例如学习“6的认识”时,先出示主题图,问学生图中有些什么?学生从中数出6朵小花,6只小鸟,6个气球。从而感知5的某些具体意义。再从实物中慢慢抽象成某一特定物体,利用学生的学具小棒摆出由6根小棒组成的任何图形,从而让学生在动手的过程中,不仅表现出自己的独特创意,而且更深一层地理解6的实际意义;第三层次是利用黑板进行画6个圆,6个正方形,6个三角形等特定图形来代表6,从而慢慢抽象至数字6。这样从实物至图形,在抽象到数字,整个过程应该符合一年级小学生的特点,也是数形结合思想的一种渗透。
二、对应思想方法
利用数量间的对应关系来思考数学问题,就是对应思想。寻找数量之间的对应关系,也是解答应用题的一种重要的思维方式。
在低、中年级整数应用题训练时,教师就应该让学生明白数量之间存在着一一对应的关系。
例如:水果店上午卖出苹果6筐,下午又卖出同样的苹果8筐,比上午多卖100元,每筐苹果多少元? 这里存在着钱数和筐数的对应关系,学生如果能看出下午比上午多卖的100元对应的筐数是(8-6)筐,此题就迎刃而解了,即100÷(8-6)=50(元)。
此外,在教学归一问题、相遇问题时,都要让学生找到题中数量之间的对应关系。解决问题对于小学生是个抽象的问题,特别对于低、中年级学生更难理解。但找到了对应关系,也就找到了解题的关键。
三、转化思想方法
转化就是在研究和解决有关数学问题时,采用某种手段将一个问题转化成为另外一个问题来解决。一般是将复杂的问题转化为简单的问题,将难解问题转化为容易求解的问题,将未解决的问题转化为已解决的问题。
例如:上“整十、整百相加减”一课时,先让学生观察,然后问一问,能不能把整十、整百相加减化为我们以前所学过的几加几,几减几,这样学生不仅很快能掌握新学得知识,还可以自己解决整百相加减。这正是再渗透转化思想的方法。
四、猜想验证思想方法
猜想验证是一种重要的数学思想方法,正如荷兰数学教育家弗赖登塔尔所说:“真正的数学家常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中,教师要重视猜想验证思想方法的渗透,以增强学生主动探索和获取数学知识的能力,促进学生创新能力的发展。
例如:教“乘法分配律”一课时,我设计了以下几个环节:
(×6×25+8×25
学生独自计算结果。
2、讨论两个算式的异同点。
3、根据自己的发现举出类似的例子,并加以计算。
4、验证后,总结归律。
这样,通过算、讨论、说、算、说,学生初步感知了乘法分配律。至此,猜想乘法分配律已是水到渠成。
现代数学思想方法的内涵极为丰富,诸如还有集合思想、极限思想、优化思想、统计思想、等等,小学数学教学中都有所涉及。我们广大小学数学教师要做教学有心人,有意渗透,有意点拨,重视数学史的渗透,重视课堂教学小结,要以适应小学生年龄特点的大众化、生活化方式呈现教学内容,让学生通过现实活动,主动参与、自主探究,学会用数学思维方法提出问题、分析问题、解决问题,从而让学生的数学思维能力得到切实、有效地发展,进而提高全民族的数学文化素养。在小学数学中,数学思想方法给出了解决问题的方向,给出了解决问题的策略。这就需要教师挖掘、提炼隐含于教材的思想方法,纳入到教学目标。有目的、有计划、有步骤地精心设计教学过程,有效地渗透数学思想方法。
✹ 小学数学放缩法思想总结 ✹
本学期我继续以学校的两条“高压线”和师德规范为准绳严格要求自己。认真贯彻学校的各项规章制度,本学期我通过电话、短信、家长会等形式与家长沟通,进行友好交往,对家长提出必要的要求,并介绍一些教育孩子的方法、经验,不仅沟通信息还增进了情感的交流。和家长的关系相处融洽。孩子进步了,家长也来向我致谢。我对孩子的一片爱心不仅赢得了孩子对我的爱,也赢得了家长的信任、鼓励和支持。
对于学生,在工作中用爱的方式去教育、启发学生,尊重学生,把学生当作与自己地位平等的人来看待,当学生犯错误时,或学习不用心时,耐心教导对学生动之以情,晓之以理,激发他们的自尊心,上进的勇气。这样调动了学生进取的积极性。使其形成良好的学风。因此我所带的两个班的孩子学习数学的积极性都很高。我还配合班主任组织各种集体活动,积极参加学校组织的各项活动,丰富了学生的课内外生活,使学生的个性得到充分、自由、全面、自主、健康的发展。
另外,当同事们有困难时尽自己的全力帮助他们因此和同事相处和睦。
-
想了解更多【小学数学放缩法思想总结】网的资讯,请访问:小学数学放缩法思想总结